Our Mission

Enhance productivity and secure high grain quality of wheat in the hot and dry Australian climate.

Our Goals

  • Develop wheat with combined heat and drought tolerance by advancing existing knowledge and technologies and transferring wheat material and knowhow to breeding programmes
  • Elucidate mechanisms and molecular markers for combined heat and drought tolerance by exploring genetic diversity in wheat
  • Identify mechanisms and genetic diversity for high yielding wheat with efficient nitrogen recycling and high grain protein.
  • Build human capacity in molecular breeding and providing breeders access to the latest scientific developments and technologies.
  • Develop and test high-throughput field phenotyping tools for Australian breeders

Who We Are

uniofadel unisa uniofsydney agt GRDC-logo intergrain longreach

Research Areas

Program 1: Drought and heat tolerance

The most important constraint to wheat production in Australia is water scarcity. In the last decade, Australia has suffered multi-year droughts and, based on FAO statistics, yield in 2006 dropped by 46% below the average 1960-2010 yield levels. Towards the end of the growing season, the risk of severe drought often coincides with high temperatures, […]

Read more

Program 2: Germplasm development for genetic diversity

Crop improvement is dependent upon genetic diversity. The rate of genetic gain in breeding programs can increase by extending the amount or nature of variation available for selection using land races and wild relatives. However, exotic germplasm carries a range of undesirable traits, such as grain shattering, tall plant type, lodging, low yield potential, […]

Read more

Program 3: High throughput phenotyping tools

The development of improved varieties relies on identifying the best performing entries from a breeding population. However, high-throughput phenotyping tools beyond the plot harvester are still rare (White et al., 2012) and not used by Australian breeders. Whilst automated, high-throughput phenotyping platforms in greenhouses for the collection of precise phenotypic data are increasingly available, […]

Read more

Program 4: Linkage of yield and grain nitrogen

Introduction Nitrogen (N) is an essential macro nutrient for plants and N fertilizers have to be applied in agricultural production systems to obtain high grain yield and prevent N depletion and soil degradation. Applied in excess, N can leach from the field which leads to pollution and eutrophication of water ways. Developing crops with enhanced […]

Read more

Program 5: Genomics for breeding

Introduction Advances in genomics and high throughput technologies have the potential to transform breeding such that desired traits can be quickly sourced from wild germplasm and integrated into elite lines. By combining the latest developments in quantitative genetics with bioinformatics we hope to optimize breeding through prediction of crop performance, diversity and crossability. Sequencing technologies […]

Read more



ARC industrial transformation research hub IH130200027 titled “Genetic diversity and molecular breeding for wheat in a hot and dry climate”